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We present an exact ab initio calculation of the optical torque on a spherical uniaxially birefringent particle
of arbitrary size illuminated by plane electromagnetic wave of arbitrary polarization mode and direction of
propagation. The calculation is based on the extended Mie theory and the Maxwell stress tensor formalism. The
expression for evaluating radiation torque is derived for arbitrary �absorbing and lossless� isotropic surrounding
medium. The dependence of the optical torque on the incident angle, the polarization mode, the material
birefringence, as well as the particle size, has been systematically investigated. For normal illumination,
namely, with the incident wave vector k0 perpendicular to the extraordinary axis �EA� of the particle, the
optical torque � caused by a linearly polarized �LP� incident wave always shows the angle dependence �

=�0 sin 2�e. Here, �e is the angle between the EA and the incident electric field, whereas �0 may take positive
or negative values, dependent on ne ,no, and the particle size. In the small particle limit, � versus particle radius
a displays different power law behaviors, ��a3 and ��a6, for LP and circularly polarized �CP� incident
waves, respectively, while for small material birefringence ��n � = �ne−no�, linear and square laws, ����n� and
����n�2, are found for the LP and the CP incident modes, respectively.

DOI: 10.1103/PhysRevE.72.056610 PACS number�s�: 41.20.�q, 87.80.Cc, 42.62.�b, 78.20.Fm

I. INTRODUCTION

It is well known that electromagnetic wave transports an-
gular momentum as well as linear momentum. When scat-
tered, in addition to optical force caused by the transfer of
linear momentum, the electromagnetic wave also exerts on
the scatterer a torque due to the transfer of angular momen-
tum. In a certain case, this torque may make the scatterer
rotate �1�, which, when combined with optical tweezers �2�,
introduces a unique and simple handle to control both the
location and the orientation of a particular microsized par-
ticle. The advance has led to a wide variety of applications,
including the possibility of rotating biological structure and
developing optically driven and controlled micromachines. It
has been shown �3� that the optical torque would vanish for
an isotropic nonabsorbing spherical scatterer. So, early rota-
tional micromanipulation was achieved by using absorbing
particles �4,5�. To overcome the heating problem in the ab-
sorbing particle that limits the achievable rotation rate, opti-
cal systems have recently been designed with lossless geo-
metrically anisotropic �6–11� and optically anisotropic
�birefringent� particles �12–19�. In particular, optical appara-
tuses have been demonstrated �18,19� that can apply and
accurately measure the torque exerted by laser beam on a
birefringent particle.

Although intensively investigated experimentally, the op-
tical torque on a birefringent particle was theoretically evalu-
ated mostly in two limiting cases: ��a �12,20� and ��a
�18�. Here, � denotes the incident wavelength, and a the
dimension of the scattering particle, e.g., the radius of spheri-
cal scatterer. Friese and co-workers �12� proposed that the
optical torque per unit area is given by

� = −
�c

2	
E0

2 sin�k0d�no − ne��cos 2
 sin 2�e

+
�c

2	
E0

2�1 − cos�k0d�no − ne���sin 2
 , �1�

where � is the electric permittivity, k0 the free-space wave
number, 	 the angular frequency of incident wave, c the
light velocity, d the thickness of the particle, and no and ne
are the refractive indices of the birefringent particle in, re-
spectively, the ordinary and extraordinary directions,
whereas �e is the angle between the extraordinary axis �EA�
of the birefringent particle and the incident electric field, and
finally, 
 describes the degree of ellipticity of the incident
light �12�, with 
=0 or � /2 corresponding to linearly polar-
ized �LP� and 
=� /4 circularly polarized �CP� light. The
expression, ideally suited for a flat disk, is based on ray
optics, which is valid in the limiting case ��a. La Porta and
Wang presented another expression �18�, which was implicit
in the earlier analysis of more elementary cases �see, e.g.,
Ref. �3��

� = q̂�0 sin 2�e, �2�

where q̂ is a unit vector normal to the electric field and the
polarization induced on the scatterer, and �0 is the maximum
magnitude of the optical torque. Equation �2� was derived in
the limiting case ��a. The two expressions meet difficulty
for the intermediate case, where the size of the scattering
particle a and the incident wavelength � are of the same
order. It is therefore desirable to have a complete solution to
the optical torque problem on birefringent particle.

The purpose of this paper is to present an exact ab initio
calculation of the radiation torque on a spherical uniaxially
birefringent particle of arbitrary size, caused by an incident
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plane electromagnetic wave with arbitrary polarization mode
and direction of propagation. The dependence of the radia-
tion torque on the incident angle, incident polarization mode,
incident wavelength, as well as the material birefringence
has been systematically investigated. The results verify the
wave-plate behavior in the transfer of angular momentum
from light to the scatterer. It is found that the angle depen-
dence of Eq. �2�, which is derived in the limiting case �
�a, remains valid for arbitrary particle size when the par-
ticle is subject to normal illumination, namely, with the inci-
dent wave vector k0 normal to the EA, by the LP incident
wave. However, the maximum magnitude �0 of the optical
torque may change sign as particle size increases, in qualita-
tive agreement with the first term of Eq. �1� derived based on
ray optics. Due to the shape effect, at some particular ranges
of particle size, the EA can be aligned by the LP incidence
with the E-field direction regardless of ne−no= ± ��n�, pre-
senting a striking contrast to Eq. �1�, since the latter implies
that, for the LP incidence, particles with ne−no= ��n� and
ne−no=−��n� are always subject to torque in opposite direc-
tions. For different polarization modes of the incident plane
wave, the radiation torque � versus the particle radius a may
display different power-law behaviors in the small particle
limit. In addition, the torque is found to exhibit linear and
square law dependence on the material birefringence �n
=ne−no for small ��n�, regardless of the particle size.

The rest of the paper is organized as follows. In Sec. II,
we describe a comprehensive formulation of exact ab initio
calculation of radiation torque based on the Mie-type solu-
tion and the Maxwell stress tensor formalism. Systematic
numerical results are presented in Sec. III. A summary is
given in Sec. IV. Some technical results are relegated to the
Appendix.

II. GENERAL FORMULATION

The Mie-type solution to the scattering problem of plane
electromagnetic waves by a sphere of arbitrary size and with
gyromagnetic permeability tensor has recently been pre-
sented �21�. Here, we first outline the scheme of the solution
to the scattering problem and then concentrate on the deriva-
tion of the radiation torque formulas based on the Maxwell
stress tensor formalism.

A. Mie-type solution of scattering by a birefringent sphere

The Maxwell equations for time-harmonic field inside the
sourceless and homogeneous spherical particle read �assum-
ing time dependence e−i	t�

� � EI = i	BI, �3a�

� � HI = − i	DI, �3b�

� · DI = 0, �3c�

� · BI = 0. �3d�

The constitutive relations between the electric displacement
vector DI, the magnetic induction BI, the electric field EI,

and the magnetic field HI inside the particle are given, for a
birefringent particle, by

DI = �s�J · EI, BI = 
sHI, �4�

where the permittivity tensor �s�J is given by

�s�J= �s	1 0 0

0 1 0

0 0 1 + u

 , �5�

and �s�
s� is the scalar permittivity �permeability�. For sim-
plicity, 
s is set to be 
0, the permeability of the surrounding
medium, while �s=�r�0, with �0 denoting the permittivity
outside particle. It follows from �3� and �4� that DI satisfies
the wave equation

� � � � ��J−1 · DI� − ks
2DI = 0 , �6�

with ks
2=	2�s
s and

�J−1 =	
1 0 0

0 1 0

0 0
1

1 + u

 . �7�

The divergenceless property �3c� suggests that DI be ex-
panded in terms of the vector spherical wave functions
�VSWFs� Mmn

�1��k ,r� and Nmn
�1��k ,r� �21–23�

DI = �
n,m

Emn�cmnMmn
�1��k,r� + dmnNmn

�1��k,r�� , �8�

where cmn and dmn are the expansion coefficients, and k is as
yet undetermined. In general, there are three kinds of
VSWFs: Mmn

�J��k ,r�, Nmn
�J��k ,r�, and Lmn

�J��k ,r�. The diver-
genceless property of D implies that it does not involve Lmn,
thereby simplifying the algebra involved. The three kinds of
VSWFs are defined for J=1 and 3 as in Refs. �21–23�. Ex-
cept otherwise explicitly specified, hereinafter the summa-
tion �n,m implies that n runs from 1 to +� and m from −n to
+n for each n. The implication of ��,
 is similar. The pref-
actor Emn is given by Emn= inE0Cmn, with E0 characterizing
the amplitude of the electric field of incident wave and �22�

Cmn = � 2n + 1

n�n + 1�
�n − m�!
�n + m�!
1/2

. �9�

By using the properties of VSWFs, it can be worked out that
�21�

�J−1 · Mmn = �
�=0

+�

�

=−�

+�

�g̃
�
mnM
� + ẽ
�

mnN
� + f̃
�
mnL
�� ,

�J−1 · Nmn = �
�=0

+�

�

=−�

+�

�ḡ
�
mnM
� + ē
�

mnN
� + f̄
�
mnL
�� . �10�

Therefore, one has
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�J−1 · DI = �
n,m

Emn�c̄mnMmn
�1��k,r� + d̄mnNmn

�1��k,r�

+ wmnLmn
�1��k,r�� + w00L00

�1��k,r� , �11�

where the coefficients g̃
�
mn , ẽ
�

mn , f̃
�
mn etc., together with d̄mn,

c̄mn, wmn, and w00, can be obtained in the same way as in Ref.
�21�.

Inserting �8� and �11� into the wave equation �6�, after
some algebra one gets

�
n,m

Emn�c̃mnMmn
�1��k,r� + d̃mnNmn

�1��k,r�� = 0 , �12�

with

c̃mn = k2�
�,


E
�

Emn
�g̃mn


�c
� + ḡmn

�d
�� − ks

2cmn,

d̃mn = k2�
�,


E
�

Emn
�ẽmn


�c
� + ēmn

�d
�� − ks

2dmn. �13�

Equations �12� and �13� imply an eigensystem governing the
value of k for expansion �8�

� Ē Ẽ

Ḡ G̃
��d

c
� = ��d

c
� , �14�

where �=ks
2 /k2, and the matrices G̃, Ḡ, Ẽ, and Ē are given by

G̃mn,
� =
E
�

Emn
g̃mn


�, Ḡmn,
� =
E
�

Emn
ḡmn


� ,

Ẽmn,
� =
E
�

Emn
ẽmn


�, Ēmn,
� =
E
�

Emn
ēmn


� , �15�

with mn and 
� denoting the row and column indices, re-
spectively. Let �l and �dmn,l ,cmn,l�T denote, respectively, the
eigenvalues and the corresponding eigenvectors of eigensys-
tem �14�, with l representing the index of eigenvalues and
corresponding eigenvectors. One can then construct a new
set of vector functions Vl based on the eigenvectors
�dmn,l ,cmn,l�T

Vl = −
i�s

�l
�
n,m

Emn�cmn,lMmn
�1��kl,r� + dmn,lNmn

�1��kl,r�� ,

�16�

with kl=ks /��l. It follows directly from

� · Mmn = � · Nmn = 0 �17�

that Vl are divergenceless

� · Vl = 0. �18a�

In addition, they satisfy the wave equation for DI field �6�

� � � � ��J−1 · Vl� − ks
2Vl = 0 . �18b�

Thus, DI can be expanded in terms of Vl

DI = �
l

�lVl, �19�

where the expansion coefficients �l are to be determined by
matching the boundary conditions at the surface of sphere.
With DI given by �19�, it follows from �3a� and �4� that EI
and HI fields can be written as

EI =
1

�s
�J−1 · DI = − �

n,m
iEmn�

l

�l�cmn,lMmn
�1��kl,r� + dmn,l

�Nmn
�1��kl,r� +

wmn,l

�l
Lmn

�1��kl,r�

+ �

l

i�l�w00,l

�l
L00

�1��kl,r�
 ,

HI =
− i

	
s
� � EI = −

1

	
s
�
n,m

Emn�
l

kl�l�dmn,lMmn
�1��kl,r�

+ cmn,lNmn
�1��kl,r�� , �20�

with

wmn,l = �
�,


E
�

Emn
� f̄mn


�d
�,l + f̃mn

�c
�,l� ,

w00,l = �
�,


E
�� f̄00

�d
�,l + f̃00


�c
�,l� = −� 2

15
ud02,l.

Notice that, since EI no longer satisfies � ·EI=0, its expan-
sion includes Lmn terms that are absent in the isotropic case.

The scattered fields Es, Hs, and incident fields Einc, Hinc in
the isotropic surrounding medium have the same form as in
the Mie solution �23,24�. However, since the form of the
permittivity tensor adopted �see �5�� implies that the EA of
birefringent particle is along the z axis, for arbitrary incident
direction of plane wave, the expansions of the field are not
limited to m= ±1 modes.

In terms of VSWFs, the scattered fields �Es ,Hs� are ex-
panded as

Es = �
n,m

iEmn�amnNmn
�3��k0,r� + bmnMmn

�3��k0,r�� ,

Hs =
k0

	
0
�
n,m

Emn�bmnNmn
�3��k0,r� + amnMmn

�3��k0,r�� , �21�

where k0
2=	2�0
0 with �0 and 
0 being, respectively, the

scalar permittivity and permeability of the surrounding me-
dium. The expansion coefficients amn and bmn are to be de-
termined by matching boundary conditions.

Suppose that the particle is illuminated by a plane wave
characterized by the incident wave vector k0, with

k0 = k0�sin �k cos 
kex + sin �k sin 
key + cos �kez� , �22�

where ex, ey, and ez are three unit base vectors of the Carte-
sian coordinate system and �k�
k� is the polar �azimuthal�
angle of k0, as schematically shown in Fig. 1. The electric
and magnetic fields of the incident plane wave are then
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Einc = E0�p��̂k + p
�̂k�eik0·r,

Hinc =
k0

	
0
E0�p��̂k − p
�̂k�eik0·r, �23�

where p̂= �p��̂k+ p
�̂k� is the normalized complex polariza-

tion vector, with �p̂�=1, and the unit vectors �̂k and �̂k are
defined in the direction of increasing �k and 
k such as to

constitute a right-hand base system together with k̂0=k0 /k0,
as shown in Fig. 1, namely

k̂0 � �̂k = �̂k, �̂k � �̂k = k̂0, �̂k � k̂0 = �̂k. �24�

In terms of VSWFs, the incident fields �Einc ,Hinc� read

Einc = − �
n,m

iEmn�pmnNmn
�1��k0,r� + qmnMmn

�1��k0,r�� ,

Hinc = −
k0

	
0
�
n,m

Emn�qmnNmn
�1��k0,r� + pmnMmn

�1��k0,r�� .

�25�

The expansion coefficients pmn and qmn are

pmn = �p��̃mn�cos �k� − ip
�̃mn�cos �k��e−im
k,

qmn = �p��̃mn�cos �k� − ip
�̃mn�cos �k��e−im
k, �26�

where the regular angular functions �̃mn�cos �� and
�̃mn�cos �� are defined based on the first kind of associated
Legendre functions Pn

m�cos �� �22–24�

�̃mn�cos �� = Cmn�mn�cos �� = Cmn
m

sin �
Pn

m�cos �� ,

�̃mn�cos �� = Cmn�mn�cos �� = Cmn
d

d�
Pn

m�cos �� , �27�

with Cmn defined in �9�.
Matching boundary conditions at the surface of sphere,

and after some algebra, one arrives at the equations that
serve to determine the expansion coefficients �l, amn, and
bmn based on pmn and qmn

1

ms
�

l

1

k̄l�l

jn�k̄lms��wmn,l�l + �n����amn

+
1

ms
�

l

1

k̄l

�n��k̄lms��dmn,l�l = �n����pmn,

�n���bmn +
1

ms
�

l

1

k̄l

�n�k̄lms��cmn,l�l = �n���qmn,

�n���amn +

0


s
�

l

�n�k̄lms��dmn,l�l = �n���pmn,

�n����bmn +

0


s
�

l

�n��k̄lms��cmn,l�l = �n����qmn, �28�

where

� = k0a, ms = �1 + u
ks

k0
, k̄l =

kl

ks
, �l =

ks
2

kl
2 =

1

k̄l
2

,

�29�

with a the radius of spherical particle. The Riccati-Bessel
functions �n�z� ,�n�z� ,�n�z� are given by �24�

�n�z� = zjn�z�, �n�z� = zhn
�1��z�, �n�z� = − zyn�z� .

�30�

Some details about numerical solution of �28� can be found
in Ref. �21�.

B. Radiation torque

With the incident fields and the scattered field given by
�25� and �21�, respectively, the total external field outside the
particle reads

Ee = �
n,m

iEmn�amnNmn
�3��k0,r� + bmnMmn

�3��k0,r� − pmn

�Nmn
�1��k0,r� − qmnMmn

�1��k0,r�� ,

He =
k0

	
0
�
n,m

Emn�bmnNmn
�3��k0,r� + amnMmn

�3��k0,r� − qmn

�Nmn
�1��k0,r� − pmnMmn

�1��k0,r�� , �31�

which is explicitly reduced to

Ee =
i

k0r
�
n,m

Emneim
�n�n + 1�
k0r

UmnPn
mer + �Umn� �mn

+ Vmni�mn�e� + �Umn� i�mn − Vmn�mn�e

 ,

FIG. 1. Geometry of the scattering problem.
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He =
k0

	
0

1

k0r
�
n,m

Emneim
�n�n + 1�
k0r

VmnPn
mer + �Vmn� �mn

+ Umni�mn�e� + �Vmn� i�mn − Umn�mn�e

 , �32�

where

Umn = amn�n�k0r� − pmn�n�k0r� ,

Umn� = amn�n��k0r� − pmn�n��k0r� ,

Vmn = bmn�n�k0r� − qmn�n�k0r� ,

Vmn� = bmn�n��k0r� − qmn�n��k0r� . �33�

The time-averaged Maxwell stress tensor is then, for isotro-
pic medium

T̂ = 1
2 Re�EeDe

* + HeBe
* − 1

2 �Ee · De
* + He · Be

*�Î� , �34�

where the superscript � denotes the complex conjugate, and Î
is the unit dyadic. The time-averaged torque � on the spheri-
cal scatterer can be evaluated by �25,26�

� = −� � dS · K̂ = −� � �er · K̂�dS , �35�

where er=r /r is the unit vector in radial direction with r
= �r�, and the time-averaged angular momentum flux tensor

K̂ reads �26�

K̂ = T̂ · �r � Î� = T̂ � r . �36�

As a result, the time-averaged torque becomes

� = −� � �er · �T̂ � r��dS =� � �r � �T̂ · er��dS

= r3� � er � �T̂ · er�d� . �37�

After some algebra, the Cartesian components of the torque
can be worked out as

� = Re���x
�1� + �x

�2��ex + ��y
�1� + �y

�2��ey + ��z
�1� + �z

�2��ez� ,

�38�

where

�x
�1� =

1

2
r3�0

*�
n,m

�
�,


�VmnU
�
* W�p

�x� − Umn� U
�
* W�p

�x�� ,

�y
�1� =

1

2
r3�0

*�
n,m

�
�,


�VmnU
�
* W�p

�y� − Umn� U
�
* W�p

�y�� ,

�z
�1� =

1

2
r3�0

*�
n,m

�
�,


�VmnU
�
* W�p

�z� − Umn� U
�
* W�p

�z� � , �39�

�x
�2� =

1

2
r3 ��0
0�


0
�
n,m

�
�,


�UmnV
�
* W�p

�x� − Vmn� V
�
* W�p

�x�� ,

�y
�2� =

1

2
r3 ��0
0�


0
�
n,m

�
�,


�UmnV
�
* W�p

�y� − Vmn� V
�
* W�p

�y�� ,

�z
�2� =

1

2
r3 ��0
0�


0
�
n,m

�
�,


�UmnV
�
* W�p

�z� − Vmn� V
�
* W�p

�z� � , �40�

where W�p
�x,y,z� and W�p

�x,y,z� are integrals involving two regular
auxiliary angular functions �mn�cos �� and �mn�cos �� given
in the Appendix.

It should be noted that the integrations in Eqs. �35� and
�37� are over the outer surface of the spherical particle, so
Umn, Umn� , Vmn, and Vmn� given by Eq. �33�, as well as �x,y,z

�1,2�

given in �39� and �40�, should be calculated at the sphere
surface r=a. If so evaluated, the formulas for radiation
torque Eqs. �38�–�40� hold for both absorbing and lossless
surrounding medium. They are presented here for arbitrary
isotropic surrounding medium. If the background medium is
lossless, with both permittivity and permeability being real
numbers, then the integration �35� can be performed at
spherical surface with arbitrary radius r�a, due to conser-
vation of momentum and angular momentum. As a result, the
integration is usually evaluated in the limit r→� for lossless
surrounding medium, where the field expressions become
much simpler by using the asymptotical formulas for
Riccati-Bessel functions

�n��� � �− i�n+1 exp�i��, �n��� � in+1 exp�− i�� ,

�n��� � ��n��� + �n����/2. �41�

Substituting Eq. �41� into Eqs. �39� and �40�, after some
algebra, the expressions for torque can be considerably sim-
plified for lossless medium. They are

�x = Re�N1�, �y = Im�N1�, �z = Re�N2� , �42�

where

N1 =
2��0�E0�2

k0
3 �

n,m
�mn�ãm,nãm+1,n

* + b̃m,nb̃m+1,n
* − p̃m,np̃m+1,n

*

− q̃m,nq̃m+1,n
* � ,

N2 = −
2��0�E0�2

k0
3 �

n,m
m��ãm,n�2 + �b̃m,n�2 − �p̃m,n�2 − �q̃m,n�2� ,

�43�

with �mn= ��n−m��n+m+1��1/2, whereas ãm,n, b̃m,n, p̃m,n, and
q̃m,n are given by

ãm,n = amn −
1

2
pmn, p̃mn =

1

2
pmn,

b̃m,n = bmn −
1

2
qmn, q̃mn =

1

2
qmn, �44�

with amn, bmn, pmn, and qmn being coefficients in Eq. �31�. We
note that similar expressions for lossless background me-
dium were presented by several authors �27–30�.
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III. NUMERICAL RESULTS

We are now ready to present systematic numerical results.
Except otherwise explicitly specified, the results shown are
mostly for the case with �r=�s /�0=2.56, roughly a typical
value in most experiments. The material birefringence is thus
due to the anisotropic parameter u. In our numerical calcu-
lation, the EA of the birefringent particle is set to be the z
axis, without loss of generality. The axial symmetry of the
permittivity �5� implies that the scattering is independent of
the azimuthal angle 
k of the incident wave vector k0. As a
result, for simplicity, we set 
k=0, which means �̂k=ey and
k0 lies in the x-y plane. The radiation torque is a function of
incident angle �k. In addition, as most experiments applied a
laser beam with fixed incident wavelength while the size of
the particle is changed �see, e.g., Ref. �16��, in our calcula-
tion the optical torque is presented in units of 2I0�3 /c, with c
the light velocity, � the incident wavelength, and I0

= 1
2c�0�E0�2 the incident irradiance.

A. Oblique illumination

We first study the case of oblique illumination, namely,
the case with k0 not normal to the EA of the birefringent
particle. Three different polarization modes of the incident
plane wave are considered: �i� the TM mode, in which p̂
= �̂k and the electric vector vibrates in the incident plane; �ii�
the transverse electric �TE� mode, in which p̂=�̂k and thus
the magnetic vector vibrates in the incident plane; and �iii�
the left circularly polarized �LCP� mode with p̂= �1/�2���̂k

+ i�̂k�. The incident plane is defined by the EA and k0. We
do not study the right circularly polarized incident mode,
since its results can be easily inferred from those for the LCP
mode by symmetry.

The typical dependence of the optical torque on the inci-
dent angle �k is shown, for 0��k�� /2, in Fig. 2 at size
parameter �=k0a=5 with different values of birefringent pa-
rameter u. For � /2��k��, one has �y��k�=−�y��−�k� and
�x��k�=�x��−�k� by symmetry. For TM and LCP incident
modes, the y component of the optical torque �y is found to
display similar �k dependence. When u�0�u�0�, corre-
sponding to ne�no�ne�no�, �y is negative �positive�, indi-
cating that the optical torque due to the TM incidence will
align the EA with the direction parallel �normal� to the E
field, and the CP incidence will make the EA parallel �nor-
mal� to the plane of the incident E field. Stable equilibrium is
reached at �k=� /2��k=0� for the u�0�u�0� case. For the
TM incident wave, the angle between the EA �z axis� and the
incident electric field is �e= �� /2�−�k, as shown in Fig. 2.
However, the maximum value of �y does not occur at �e
=�k=� /4, but instead depends on the material birefringence
�the anisotropy parameter u�. This is different from the nor-
mal illumination case with k0 perpendicular to the EA, where
the torque always reaches its maximum at �e=� /4 �see Fig.
5 below� independent of the value of u. For the TE case, �y
is much smaller than in the TM case, and the �k dependence
becomes somewhat complicated, especially for large u, as
can be seen in Fig. 2�b�. For the case with u=0.4, e.g., �y

changes sign as �k goes from 0 to � /2, resulting in two
stable equilibrium states at both �k=0 and �k=� /2, quite
different from the case of u=0.2, where only �k=0 is rota-
tionally stable. While for the TE and TM cases, �y is the only
nonvanishing component of the radiation torque, for the LCP
incidence, besides �y, the incident wave also exerts a posi-
tive �x on the particle, trying to make the EA rotate together
with the E field. When � and u are not very large, the mag-
nitude of �x monotonically increases with the incident angle
�k in the region from 0 to � /2, and reaches a maximum at
�k=� /2; then it decreases with �k in the region from � /2 to
� due to symmetry �x��k�=�x��−�k�.

Figure 3 shows �y /�3 and �x /�2 versus �k at u=0.2 for
different values of size parameter �. Here, �y /�3 and �x /�2,
instead of �y and �x, versus �k are exhibited for the conve-
nience of displaying curves for different � in the same figure.
For the TM and LCP incident waves, the �k dependence of
�y is similar to the case of small �, implying that, irrespec-
tive of the value of �, for the TM case, the optical torque
always tends to make the EA parallel �normal� to the incident
E field for particle with ne�no �ne�no�, and the LCP inci-
dence will align the EA with the directions parallel �normal�
to the E-field plane for particle with ne�no�ne�no�. For the

FIG. 2. The optical torque as a function of incident angle �k at
�=5 and different values of birefringent anisotropy parameter u. �a�
�y versus �k for the TM incidence; �b� �y versus �k for the TE
incidence; �c� �y versus �k for the LCP incidence; �d� �x versus �k

for the LCP incidence. Also shown are the schematic plots of the
directions of incident wave vectors and E fields for the TM and the
TE incidences.
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TE case, the �k dependence becomes complicated as � in-
creases. For example, when �=5, �k=0 is the only rotation-
ally stable equilibrium. For �=30, the only stable equilib-
rium is reached at �k=� /2, in contrast to the case with �
=5. If �=15, a stable equilibrium is achieved at �k�80°.
Neither �k=0 nor �k=� /2 is stable, although �y vanishes at
such values of �k. While �=10, both �k=0 and �k�80° are
stable. Finally, for the LCP case, the �k dependence of �x is
no longer monotonic in the region 0��k�� /2 when � is
large, as exhibited in Fig. 3�d� for �=15 and 30.

To study the particle size dependence of the optical torque
in the small particle limit, we consider also the general LP
incident mode, in addition to the TM, TE, and LCP modes.
Here, the general LP mode is characterized by the polariza-

tion vector p̂= p��̂k+ p
�̂k, with both p� and p
 real and
neither p� nor p
 vanishing. It is taken into account in order
to address the particle size dependence of �x, which is van-
ishing for both the TM �p
=0� and the TE �p�=0� cases.
Both �x and �y versus particle size are found to exhibit dif-
ferent power laws for different incident polarization modes,
as exemplified in Fig. 4 for �k=55° and u=0.2. Figure 4�a�
and Fig. 4�b� display �x /�6 versus log10 � for the LCP inci-

dent wave and �x /�3 versus log10 � for the LP incident wave

with p̂= 1
2 ��3�̂k+ 
̂k�, respectively. The flat curves at small �

implies that �x�a3 for LP and �x�a6 for LCP incidences.
Figure 4�c� and Fig. 4�d� show, respectively, the plots of
�y /�5 and �y /�3 versus log10 � for the TE and other polar-
ization modes studied. From Fig. 4�c�, �y �a5 law is ob-
served for the TE case, while Fig. 4�d� indicates that �y
obeys �y �a3 for all other incident polarization modes. In
addition, although the �y �a3 law is violated for the non-
matching case at large �, our calculation shows that it still
serves as a good approximation for the matching case �r=1
even for relatively large �, as can be seen from the dotted
line in Fig. 4�d�.

B. Normal illumination

Next, we turn to the normal illumination with incident k0
perpendicular to the EA, which has been intensively studied

FIG. 3. Dependence of �y /�3 and �x /�2 on �k at u=0.2 and
different values of �. �a� 103�y /�3 versus �k for the TM incidence;
�b� 103�y /�3 versus �k for the TE incidence; �c� 103�y /�3 versus �k

for the LCP incidence; �d� 102�x /�2 versus �k for the LCP
incidence.

FIG. 4. �a� 104�x /�6 versus log10 � at u=0.2 and incident angle

�k=55° for the LCP incidence with p̂= �1/�2���̂k+ i�̂k�; �b�
103�x /�3 versus log10 � at u=0.2 and �k=55° for the LP incidence

with p̂= 1
2 ��3�̂k+�̂k�; �c� 104�y /�5 versus log10 � at u=0.2 and

�k=55° for the TE incidence with p̂=�̂k; �d� 103�y /�3 versus
log10 � at u=0.2 and �k=55° for the LP, LCP, and TM incidences.
Also shown as dotted line is 103�y /�3 versus log10 � for the LCP
case at matching case �r=1.
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experimentally �12–19�. To be specific, the incident wave is
characterized by �22� with �k=� /2 and 
k=0, namely, k0 is
in the x direction while keeping the EA in the z direction. For
normal illumination, both the TE and the TM incident modes
yield vanishing torque. We therefore consider two cases. The
first case is the LP mode with the polarization vector given

by p̂=cos �e�̂k+sin �e�̂k=−cos �eez+sin �eey, so that the
angle between the EA and the incident E field is �e, as
shown in Fig. 5. The TM and TE modes correspond to �e
=0 and �e=� /2, respectively. The second case is the LCP

incident wave with the polarization vector p̂= �1/�2���̂k

+ i�̂k�.
Figure 5 shows the torque as a function of �e at �=5 and

15 for the LP incident wave. The circles and squares denote
the calculated optical torque, while the lines represent
�0 sin 2�e curves, with �0 the maximum magnitude of the
torque. The sine dependence of torque on 2�e is found to
hold up to numerical accuracy, with maximum magnitude of
torque occurring at �e=� /4, as Eq. �2� proposed in Ref. �18�
�see also the first term in �1��. Our numerical results suggests
that the �0 sin 2�e law is valid for arbitrary size parameter �
and material birefringence, provided that k0 is perpendicular
to the EA. In addition, it is noted that when � is big enough,
the EA of particle with ne�no�u�0� is aligned with the
direction normal to the incident E field, in contrast with the
case of small � experimentally studied �18�. This is clearly
seen from Fig. 5. When u=0.2, the maximum magnitude of
the torque �0�0 for �=5, implying that the particle will
rotate in the positive-x direction. The stable equilibrium is
achieved at �e=0 or �, resulting in the alignment of the EA
with the E field for ne�no. For u=−0.2, �0�0, a similar
analysis leads to the conclusion that the EA is reoriented
toward the direction normal to the E field for ne�no. The
situation becomes contrary for the case with �=15, as shown

in Fig. 5�b�, where �e=0 and � correspond to the stable
equilibrium for ne�no. For ne�no, �e=� /2 is the stable
equilibrium, implying that the optical torque tends to make
the EA normal to the incident E field.

Figure 6 shows �0 for the LP incidence as a function of
the size parameter �. It is found that, as the particle size
increases, the torque will change its sign, implying that the
particle with ne�no is not always aligned with the E field. In
addition, �0 /� shows an overall wavelike behavior between
positive and negative values, somewhat resembling the first
term in �1� based on ray optics for a simple, ideally flat disk.
In most cases, �0 has different signs for ne−no= ± ��n�, indi-
cating that particles with ne−no= + ��n� and ne−no=−��n�
are subject to torque in opposite directions, which is in
agreement with the first term in �1�. However, it happens at
some peculiar ranges of � that the torque may have the same
sign for both ne−no= ± ��n�, as shown, e.g., in Fig. 6�a� for
��n�=0.1 at ��20 and ��37. This suggests that the EA
may be aligned with the directions parallel or normal to the E
field for both ne−no= ± ��n�. The situation presents a striking
contrast to the first term in �1�, since the latter implies that
the particles with ne−no= ± ��n� are always subject to torque
in opposite directions. The difference comes from the effect
of particle shape. Finally, it is also noted that the fluctuating
behavior in �x versus � curve is due to nonmatching �r�1.
For the matching case �r=1, the wavelike behavior becomes
quite smooth, provided that ��n� is not very large, as can be
seen in Fig. 6�c�.

For the LCP incident wave, Fig. 7 shows plots of �x /�2

versus � for different material birefringences. Qualitative
agreement is observed with the second term in �1�. The dif-
ference lies in that the torque will never vanish except in the
limit �→0, and the amplitude of the wavelike behavior de-
cays with � at relative small �. The overall � dependence is
similar to the LP case, except that �x is always positive in-
stead of fluctuating between positive and negative values in
the LP case. This is because the LCP wave always transports
positive angular momentum to the scatterer, while the LP
wave can transfer both positive and negative angular mo-
mentum to the scatterer. In contrast to the LP case shown in

FIG. 5. Torque as a function of angle �e between the extraordi-
nary axis and incident E field for normal illumination and u
= ±0.2 at �=5 �a� and �=15 �b�. The circles and squares are cal-
culated results, while the lines represent �x=�0 sin 2�e. Also shown
is the schematic plot for the directions of incident wave vector and
E field.

FIG. 6. 10�0 /� versus � for the LP normal illumination at �a�
ne−no= ±0.1; �b� ne−no= ±0.2; and �c� ne−no=0.2 with �r=1 and
2.56.
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Fig. 6�a� and 6�b�, for the LCP case, ne−no= ± ��n� yield
quite similar results. And also, as in the LP case, the zigzag
behavior is due to �r�1. When �r=1, smooth wavelike de-
pendence is observed, as shown in Fig. 7�c�.

The wavelike behavior of �x /�2 versus � curve for the
LCP incidence leads to the appearance of peaks as � in-
creases, as shown in Fig. 7 and Fig. 8�a�. The peak separa-
tion ��p is dependent on �ne−no�. In particular, it is found to
fluctuate within 15% as � increases for all cases studied, as
exemplified in Fig. 8�a�. No decaying in amplitude of the
wavelike behavior is found here for sufficiently large �. Fig-
ure 8�b� is a plot of peak separation ��p as a function of
1/ �ne−no� for both ne�no and no�ne. The error bars denote
the upper and lower bounds of ��p as � goes from 40 to
140. It is found that linear relation still provides a pretty fair
approximation for ��p versus 1/ �ne−no� irrespective of
whether ne�no or ne�no, in agreement with the second
term in �1� as well as the experimental result �16�. The wave-
plate behavior is thus verified in the transfer of the angular
momentum from the incident light to the scatterer.

To study dependence of the radiation torque on particle
size in the small particle limit, Fig. 9 shows the plots of
�0 /�3 and �x /�6 versus log10 � for, respectively, the LP and
LCP incident waves. An incident polarization-dependent
scaling law is clearly exhibited: the torque due to the LP
incidence obeys the scaling law �0�a3, as exhibited in Fig.
9�a� for some typical cases with u= ±0.2 and ±0.4, while for
the LCP incidence, the torque satisfies �x�a6, as shown
typically in Fig. 9�b� for u= ±0.2 and ±0.4.

Figure 10 displays the material birefringence dependence
of the optical torque in the case of normal illumination for
both the LP and the LCP incident modes. The change of the
material birefringence is due solely to u while �r is kept at
2.56. For the LP incidence, we present results for �x at �e
=� /4, namely, �0. The � /�2 versus u, instead of � versus u,
is displayed for the convenience of plotting curves for differ-
ent values of � in the same figure. It is seen that there exists
a monotonic increase region at small �absolute� value of u, in
which the torque increases with the material birefringence,
consistent with the experiment �16�. As �u� increases, how-

ever, different oscillatory behaviors show up for different
values of �, leading to appearance of many peaks in the
range of u studied. As � increases, the monotonic increase
region near u=0 shrinks, in qualitative agreement with �1�.
In addition, it is seen that �x is always positive for the LCP
incident wave. For the LP case, the torque may change its
sign as the material birefringence increases, indicating that
the EA of a birefringent particle with ne�no can also be
oriented toward the E-field direction, even at relative small
�, provided that the material birefringence is strong enough.

Figure 11 shows the typical torque versus the material
birefringence behavior for small ��n�. The torque due to the
LP incident wave is found to display a linear dependence on
��n�, while the torque by the CP incidence exhibits square
law behavior ����n�2, both independent of the particle size.
This dependence of � on �n is in unexpected agreement
with Eq. �1�, although the latter is derived based on the ray
optics for a flat disk.

Finally, in Fig. 12 the complex oscillatory behavior of �0
versus �r=�s /�0 is shown for the LP incidence at u= ±0.2
and different values of �. The appearance of sharp peaks
recalls the Mie-type resonances. For small �, in the range of
�s shown, it is seen that the torque does not change its sign.
For large �, the torque may change its sign as �r increases.

FIG. 7. 103�x /�2 versus � for the LCP normal illumination at
�a� ne−no= ±0.1; �b� ne−no= ±0.2; and �c� ne−no=0.2 with �r=1
and 2.56.

FIG. 8. �a� 103�x /�2 versus � for the LCP normal illumination,
showing that the peak separation ��p fluctuates within only a few
percent as � increases. �b� Peak separation ��p as a function of
1/ �ne−no� at �r=2.56. The error bars show the upper and lower
bounds of ��p as � goes from 40 to 140. The change of the mate-
rial birefringence is due solely to the change in value of u. Filled
circles are obtained for the case with ne�no and open diamonds for
ne�no. The dashed line is a guide to the eye showing the linear
relation of ��p versus 1/ �ne−no�.
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IV. SUMMARY

In summary, we have performed an exact ab initio calcu-
lation of the optical torque on a spherical birefringent par-
ticle of arbitrary size illuminated by plane electromagnetic
wave with arbitrary polarization mode and direction of
propagation, based on the extended Mie theory and the Max-
well stress tensor formalism. The expression for evaluating
the radiation torque was derived for arbitrary �absorbing and
lossless� isotropic surrounding medium. The radiation torque
is found to exhibit miscellaneous dependences on the inci-
dent angle, the incident polarization, the material birefrin-
gence, as well as the particle size. The numerical results
confirm the wave-plate mechanism in the transfer of angular
momentum from the incident light to the scatterer. When a
particle with ne�no �ne�no� is subject to oblique illumina-
tion by a CP incident wave, its EA will always be aligned
with the direction parallel �normal� to the E plane. An ob-
liquely incident TM wave will reorient the EA of the scatter-
ing particle with ne�no �ne�no� toward the direction paral-
lel �normal� the incident E field irrespective of the particle
size. When a particle is subject to normal illumination by a
LP incident wave, the angle dependence �2�, which is derived
in the small particle limit, is found to hold for arbitrary par-
ticle size. The increase of the particle size affects only the
value of �0, making it vary between positive and negative
numbers, indicating that even for a particle with ne�no�ne

�no�, its EA is not always aligned with the direction parallel
�normal� to the E field by the optical torque. Owing to the
particle shape effect, in some peculiar ranges of �, the EA

may be aligned with the E-field direction for both ne−no
= ��n� and ne−no=−��n�, and vice versa, at some other
ranges of �, the torque may cause a reorientation of the EA
toward the direction normal to the E field, irrespective of
ne−no= ��n� or ne−no=−��n�. In addition, dependent on the
incident polarization mode as well as the incident direction,
the radiation torque � exhibits different power-law depen-
dences on the particle size in the small particle limit. To be
specific, set the EA of the scattering particle to be the z axis
and let the incident k0 be in x-z plane. For oblique illumina-
tion, �x is found to satisfy �x�a6 and �x�a3 for the CP and
the LP incidences, respectively, while �y obeys �y �a3 for
all incident polarization modes except the TE case, where �y
displays �y �a5 law, besides being much smaller than in
other cases. For normal illumination, while �y vanishes for
any polarization mode, �x behaves as in the case of oblique
illumination, namely, ��a�, with the exponent �=3 for the
LP incidence and �=6 for the CP incidence. Finally, when a
particle with small material birefringence �n is subject to
normal LP and CP illuminations, the optical torque versus
�n displays linear and square law behaviors, respectively,
regardless of the particle size.

Our direct classical calculation is merited due to subtleties
of both classical and quantum theories of electromagnetic
angular momentum. Furthermore, it is believed to be rel-
evant to many applications where birefringent spherical par-
ticles are implemented, typically in the case of making mea-
surements of viscosity on a microscopic scale �14�. We note
that, in reality, the experiments on optical torque are per-
formed using a laser beam. In most cases, however, the re-

FIG. 9. �a� 103�0 /�3 versus log10 � at different values of u for
the LP incidence; �b� 104�x /�6 versus log10 � at different values of
u for the LCP incidence. To fit all curves for different u in the same
figure, results for the LP cases with u=−0.2 and u=−0.4 have been
multiplied by −1 and − 1

2 , respectively, while the result for the LCP
case with u=−0.4 has been multiplied by 1

3 .
FIG. 10. The optical torque versus u at different values of � for

the LP �a� and the LCP �b� normal illumination.
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sults can be understood using the plane-wave picture �12�,
especially when the scattering particles are small compared
with the beamwidth and located near the beam axis. In addi-
tion, our formulation provides a limiting case against which
the solution of more complicated problems �e.g., torque on a
particle illuminated by strongly focused laser beam� can be
checked. Work along this line is in progress.
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APPENDIX: SOME INTEGRALS INVOLVING �mn

AND �mn

Two auxiliary functions, �mn�cos �� and �mn�cos ��, are
defined by

�mn�cos �� =
m

sin �
Pn

m�cos �� ,

�mn�cos �� =
d

d�
Pn

m�cos �� , �A1�

where the first kind of associated Legendre function Pn
m�x� is

given by �22–24�

Pn
m�x� =

1

2nn!
�1 − x2�m/2 dn+m

dxn+m ��x2 − 1�n� . �A2�

The integrals W�p
�x,y,z� and W�p

�x,y,z� are

W�p
�x� =

v�v + 1�
���2�* EmnE
�

* � � �i�mn�cos ��P�

�cos ��cos � cos 
 + �mn�cos ��P�


�cos ��sin 
�ei�m−u�
d�

= i
2�

���2�* �E0�2���n − m��v + u��1/2�v,n�u,m+1 + ��n + m��v − u��1/2�v,n�u,m−1� ,

FIG. 11. The log-log plot of the optical torque versus the mate-
rial birefringence ��n� at �=10 and 30 for the LP �a� and the LCP
�b� normal illumination. The dashed lines are guides to the eye,
showing ������n� and ������n�2 for the LP and the CP incident
waves, respectively.

FIG. 12. �0 versus �r=�s /�0 for LP normal illumination at u
= ±0.2 and �=5 �a�, �=10 �b�, and �=15 �c�.
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W�p
�y� =

v�v + 1�
���2�* EmnE
�

* � � �i�mn�cos ��P�

�cos ��cos � sin 
 − �mn�cos ��P�


�cos ��cos 
�ei�m−u�
d�

= +
2�

���2�* �E0�2���n − m��v + u��1/2�v,n�u,m+1 − ��n + m��v − u��1/2�v,n�u,m−1� ,

W�p
�z� = −

v�v + 1�
���2�* EmnE
�

* � � i�mn�cos ��P�

�cos ��ei�m−u�
 sin �d� = − i

4m�

���2�* �E0�2�v,n�u,m,

W�p
�x� =

v�v + 1�
���2�* EmnE
�

* � � ��mn�cos ��P�

�cos ��cos � cos 
 − i�mn�cos ��P�


�cos ��sin 
�ei�m−u�
d�

= i
2�

���2�* �E0�2�� �n2 − 1��n + m��v + m�
�2n + 1��2v + 1� 
1/2

�v,n−1�u,m−1 − � �v2 − 1��n − u��v − u�
�2n + 1��2v + 1� 
1/2

�v,n+1�u,m−1

− � �n2 − 1��n − m��v − m�
�2n + 1��2v + 1� 
1/2

�v,n−1�u,m+1 + � �v2 − 1��n + u��v + u�
�2n + 1��2v + 1� 
1/2

�v,n+1�u,m+1� ,

W�p
�y� =

v�v + 1�
���2�* EmnE
�

* � � ��mn�cos ��P�

�cos ��cos � sin 
 + i�mn�cos ��P�


�cos ��cos 
�ei�m−u�
d�

= −
2�

���2�* �E0�2�� �n2 − 1��n + m��v + m�
�2n + 1��2v + 1� 
1/2

�v,n−1�u,m−1 − � �v2 − 1��n − u��v − u�
�2n + 1��2v + 1� 
1/2

�v,n+1�u,m−1

+ � �n2 − 1��n − m��v − m�
�2n + 1��2v + 1� 
1/2

�v,n−1�u,m+1 − � �v2 − 1��n + u��v + u�
�2n + 1��2v + 1� 
1/2

�v,n+1�u,m+1� ,

W�p
�z� = −

v�v + 1�
���2�* EmnE
�

* � � �mn�cos ��P�

�cos ��ei�m−u�
 sin �d�

= i
4�

���2�* �E0�2�� �n2 − 1��n − m��n + m�
�2n + 1��2v + 1� 
1/2

�v,n−1�u,m + � �v2 − 1��v − m��v + m�
�2n + 1��2v + 1� 
1/2

�v,n+1�u,m� .
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